A 和 B 一起起作用时,概率从 P0 提升到 P(A+B);但为了看“在已有 B 的情况下再加 A 的边际效果”,我们比较 P(A+B) 与 P(B) 的差:ΔA | B = P(A+B) − P(B) |
这三个量里,关键比较的是“ΔA | B”和“ΔA”。也就是:当 B 已经在起作用时,再加 A 的效果,是否比 A 单独起作用时更弱/一样/更强。 |
Schwa ~ Ep/Del + Stress * Seg + (1 | Item) + (1 + Ep/Del + Stress * Seg | Subject) |
ΔCon1 | Con2 is the difference between the cumulative context and the non-cumulative context for Con2 |
Finally, Noisy HG and MaxEnt can display superlinear cumulativity in probability differences, as shown in Table 12 in which NoSchwa is given a higher value than *CCC and *Clash (again 2 vs. 1). In MaxEnt, we get predictable superlinearity when the result of adding a single constraint is probability less than 0.50